2 7 N ov 2 00 4 Isomorphisms of algebras of smooth functions revisited ∗

نویسنده

  • J. Grabowski
چکیده

It is proved that isomorphisms between algebras of smooth functions on Hausdorff smooth manifolds are implemented by diffeomorphisms. It is not required that manifolds are connected nor second countable nor paracompact. This solves a problem stated by A. Weinstein. Some related results are discussed as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 03 10 29 5 v 1 [ m at h . D G ] 1 8 O ct 2 00 3 Isomorphisms of algebras of smooth functions revisited ∗

A short proof of the fact that isomorphisms between algebras of smooth functions on Hausdorff smooth manifolds are implemented by diffeomorphisms is given. It is not required that manifolds are second countable or paracompact. This solves a problem stated by A. Wienstein. Some related results are discussed as well.

متن کامل

1 5 N ov 2 00 5 Applications of BGP - reflection functors : isomorphisms of cluster algebras ∗

Given a symmetrizable generalized Cartan matrix A, for any index k, one can define an automorphism associated with A, of the field Q(u1, · · · , un) of rational functions of n independent indeterminates u1, · · · , un. It is an isomorphism between two cluster algebras associated to the matrix A (see section 4 for precise meaning). When A is of finite type, these isomorphisms behave nicely, they...

متن کامل

ar X iv : m at h / 06 11 83 1 v 1 [ m at h . R A ] 2 7 N ov 2 00 6 CLASSIFICATION OF 4 - DIMENSIONAL NILPOTENT COMPLEX

The Leibniz algebras appeared as a generalization of the Lie algebras. In this work we deal with the classification of nilpotent complex Leibniz algebras of low dimensions. Namely, the classification of nilpotent complex Leibniz algebras dimensions less than 3 is extended to the dimension four.

متن کامل

2 4 N ov 2 00 7 Rational R - matrices , centralizer algebras and tensor identities for e 6 and e 7 exceptional families of Lie algebras

We use Cvitanović’s diagrammatic techniques to construct the rational solutions of the Yang-Baxter equation associated with the e6 and e7 families of Lie algebras, and thus explain Westbury’s observations about their uniform spectral decompositions. In doing so we explore the extensions of the Brauer and symmetric group algebras to the centralizer algebras of e7 and e6 on their lowest-dimension...

متن کامل

Isomorphisms in unital $C^*$-algebras

It is shown that every  almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005